Skip to content

Quickstart

Welcome to Rook! We hope you have a great experience installing the Rook cloud-native storage orchestrator platform to enable highly available, durable Ceph storage in your Kubernetes cluster.

If you have any questions along the way, please don't hesitate to ask us in our Slack channel. You can sign up for our Slack here.

This guide will walk you through the basic setup of a Ceph cluster and enable you to consume block, object, and file storage from other pods running in your cluster.

Always use a virtual machine when testing Rook. Never use a host system where local devices may mistakenly be consumed.

Minimum Version

Kubernetes v1.21 or higher is supported by Rook.

CPU Architecture

Architectures released are amd64 / x86_64 and arm64.

Prerequisites

To check if a Kubernetes cluster is ready for Rook, see the prerequisites.

To configure the Ceph storage cluster, at least one of these local storage options are required:

  • Raw devices (no partitions or formatted filesystems)
  • Raw partitions (no formatted filesystem)
  • LVM Logical Volumes (no formatted filesystem)
  • Persistent Volumes available from a storage class in block mode

TL;DR

A simple Rook cluster is created for Kubernetes with the following kubectl commands and example manifests.

1
2
3
4
$ git clone --single-branch --branch v1.11.7 https://github.com/rook/rook.git
cd rook/deploy/examples
kubectl create -f crds.yaml -f common.yaml -f operator.yaml
kubectl create -f cluster.yaml

After the cluster is running, applications can consume block, object, or file storage.

Deploy the Rook Operator

The first step is to deploy the Rook operator.

Important

The Rook Helm Chart is available to deploy the operator instead of creating the below manifests.

Note

Check that the example yaml files are from a tagged release of Rook.

Note

These steps are for a standard production Rook deployment in Kubernetes. For Openshift, testing, or more options, see the example configurations documentation.

1
2
3
4
5
cd deploy/examples
kubectl create -f crds.yaml -f common.yaml -f operator.yaml

# verify the rook-ceph-operator is in the `Running` state before proceeding
kubectl -n rook-ceph get pod

Before starting the operator in production, consider these settings:

  1. Some Rook features are disabled by default. See the operator.yaml for these and other advanced settings.
    1. Device discovery: Rook will watch for new devices to configure if the ROOK_ENABLE_DISCOVERY_DAEMON setting is enabled, commonly used in bare metal clusters.
    2. Node affinity and tolerations: The CSI driver by default will run on any node in the cluster. To restrict the CSI driver affinity, several settings are available.
  2. If deploying Rook into a namespace other than the default rook-ceph, see the topic on using an alternative namespace.

Cluster Environments

The Rook documentation is focused around starting Rook in a variety of environments. While creating the cluster in this guide, consider these example cluster manifests:

  • cluster.yaml: Cluster settings for a production cluster running on bare metal. Requires at least three worker nodes.
  • cluster-on-pvc.yaml: Cluster settings for a production cluster running in a dynamic cloud environment.
  • cluster-test.yaml: Cluster settings for a test environment such as minikube.

See the Ceph example configurations for more details.

Create a Ceph Cluster

Now that the Rook operator is running we can create the Ceph cluster.

Important

The Rook Cluster Helm Chart is available to deploy the operator instead of creating the below manifests.

Important

For the cluster to survive reboots, set the dataDirHostPath property that is valid for the hosts. For more settings, see the documentation on configuring the cluster.

Create the cluster:

kubectl create -f cluster.yaml

Verify the cluster is running by viewing the pods in the rook-ceph namespace.

The number of osd pods will depend on the number of nodes in the cluster and the number of devices configured. For the default cluster.yaml above, one OSD will be created for each available device found on each node.

Hint

If the rook-ceph-mon, rook-ceph-mgr, or rook-ceph-osd pods are not created, please refer to the Ceph common issues for more details and potential solutions.

$ kubectl -n rook-ceph get pod
NAME                                                 READY   STATUS      RESTARTS   AGE
csi-cephfsplugin-provisioner-d77bb49c6-n5tgs         5/5     Running     0          140s
csi-cephfsplugin-provisioner-d77bb49c6-v9rvn         5/5     Running     0          140s
csi-cephfsplugin-rthrp                               3/3     Running     0          140s
csi-rbdplugin-hbsm7                                  3/3     Running     0          140s
csi-rbdplugin-provisioner-5b5cd64fd-nvk6c            6/6     Running     0          140s
csi-rbdplugin-provisioner-5b5cd64fd-q7bxl            6/6     Running     0          140s
rook-ceph-crashcollector-minikube-5b57b7c5d4-hfldl   1/1     Running     0          105s
rook-ceph-mgr-a-64cd7cdf54-j8b5p                     2/2     Running     0          77s
rook-ceph-mgr-b-657d54fc89-2xxw7                     2/2     Running     0          56s
rook-ceph-mon-a-694bb7987d-fp9w7                     1/1     Running     0          105s
rook-ceph-mon-b-856fdd5cb9-5h2qk                     1/1     Running     0          94s
rook-ceph-mon-c-57545897fc-j576h                     1/1     Running     0          85s
rook-ceph-operator-85f5b946bd-s8grz                  1/1     Running     0          92m
rook-ceph-osd-0-6bb747b6c5-lnvb6                     1/1     Running     0          23s
rook-ceph-osd-1-7f67f9646d-44p7v                     1/1     Running     0          24s
rook-ceph-osd-2-6cd4b776ff-v4d68                     1/1     Running     0          25s
rook-ceph-osd-prepare-node1-vx2rz                    0/2     Completed   0          60s
rook-ceph-osd-prepare-node2-ab3fd                    0/2     Completed   0          60s
rook-ceph-osd-prepare-node3-w4xyz                    0/2     Completed   0          60s

To verify that the cluster is in a healthy state, connect to the Rook toolbox and run the ceph status command.

  • All mons should be in quorum
  • A mgr should be active
  • At least three OSDs should be up and in
  • If the health is not HEALTH_OK, the warnings or errors should be investigated
$ ceph status
  cluster:
    id:     a0452c76-30d9-4c1a-a948-5d8405f19a7c
    health: HEALTH_OK

  services:
    mon: 3 daemons, quorum a,b,c (age 3m)
    mgr:a(active, since 2m), standbys: b
    osd: 3 osds: 3 up (since 1m), 3 in (since 1m)
[]...]

Hint

If the cluster is not healthy, please refer to the Ceph common issues for potential solutions.

Storage

For a walkthrough of the three types of storage exposed by Rook, see the guides for:

  • Block: Create block storage to be consumed by a pod (RWO)
  • Shared Filesystem: Create a filesystem to be shared across multiple pods (RWX)
  • Object: Create an object store that is accessible with an S3 endpoint inside or outside the Kubernetes cluster

Ceph Dashboard

Ceph has a dashboard to view the status of the cluster. See the dashboard guide.

Tools

Create a toolbox pod for full access to a ceph admin client for debugging and troubleshooting the Rook cluster. See the toolbox documentation for setup and usage information.

The Rook Krew plugin provides commands to view status and troubleshoot issues.

See the advanced configuration document for helpful maintenance and tuning examples.

Monitoring

Each Rook cluster has built-in metrics collectors/exporters for monitoring with Prometheus. To configure monitoring, see the monitoring guide.

Telemetry

The Rook maintainers would like to receive telemetry reports for Rook clusters. The data is anonymous and does not include any identifying information. Enable the telemetry reporting feature with the following command in the toolbox:

ceph telemetry on

For more details on what is reported and how your privacy is protected, see the Ceph Telemetry Documentation.

Teardown

When finished with the test cluster, see the cleanup guide.